M is aryl, OH, C(O)NH₂, COOH, SO₃H, OSO₃H, PO₃H₂, OPO₃H₂, NH₂, NHR₁₉, NR₁₉R₂₀, SO₂R₂₁, glycoside, lower C_1 , C_2 , C_3 , C_4 , C_5 , C_6 alkoxy, or Q is aryl, OH, C(O)NH₂, COOH, SO₃H, OSO₃H, PO₃H₂, $\mathrm{OPO_3H_2},\,\mathrm{NH_2},\,\mathrm{NHR_{19}},\,\mathrm{NR_{19}R_{20}},\,\mathrm{SO_2R_{21}},\,\mathrm{glycoside},$ lower C₁, C₂, C₃, C₄, C₅, C₆ alkoxy, or substituted or unsubstituted aryl or nitrogen-containing heteroaryl group, R₁, R₂, and R₃ are independently H or C₁, C₂, C₃, C₄, C₅, or C₆ alkyl; and n and m are, independently 0, 1, or 2; provided that at least one of R_a, R_b, R_c, R_d, R_e, R₄, R₅, and